
41

Chapitre 3
Découverte complète de Scrum

Découverte complète de Scrum1. L'origine de Scrum
L'origine de Scrum remonte aux années 1980 et est profondément enracinée
dans la philosophie du travail d'équipe et de la collaboration. Le terme "Scrum"
lui-même, emprunté au rugby, symbolise la manière dont une équipe travaille
ensemble pour atteindre un objectif commun. Cette métaphore a été intro-
duite pour la première fois dans le monde des affaires dans un article écrit par
Hirotaka Takeuchi et Ikujiro Nonaka en 1986. Intitulé The New New Product
Development Game, cet article comparait les équipes de projet à haute
performance à un Scrum dans le rugby et présentait une approche flexible et
adaptable pour le développement de produits.

Dans les années 1990, Ken Schwaber et Jeff Sutherland ont commencé à
formaliser la méthode Scrum. Ils ont fusionné leurs expériences et leurs idées
avec les concepts de Takeuchi et Nonaka, créant ainsi un cadre de gestion de
projet qui encourage la collaboration, l'adaptation et la livraison rapide. Cette
période a été cruciale pour la mise en forme de Scrum tel que nous le
connaissons aujourd'hui.

©
 E

di
ti

on
s

EN
I -

 A
ll

ri
gh

ts
 r

es
er

ve
d

42
Des concepts à la mise en œuvre de l’agilité

Réussir avec Scrum

En 2001, le Manifeste agile a été publié, promouvant des concepts tels que la
satisfaction du client grâce à la livraison rapide, l'adaptation au changement,
et la collaboration étroite entre les équipes métier et de développement.
Scrum, en tant que l'une des méthodologies agiles, adhère aux principes et
valeurs définis dans ce manifeste, ce qui a contribué à sa popularité et son
adoption.

Au fil des années, Scrum a été adopté dans divers secteurs d'activité, bien au-
delà du domaine du développement logiciel. Sa flexibilité et son efficacité ont
conduit à une large adoption dans de nombreux types d'organisations, allant
des start-ups aux grandes entreprises.

L'origine de Scrum est le reflet d'une évolution dans la façon de penser et de
gérer les projets. C'est un modèle qui rompt avec les méthodes traditionnelles
en mettant l'accent sur les personnes, la collaboration, et la capacité à
s'adapter rapidement aux changements. Le parcours de Scrum depuis son
concept initial jusqu'à sa forme actuelle est une démonstration de l'ingéniosité
et de l'innovation continues dans le domaine de la gestion de projet.

43Découverte complète de Scrum
Chapitre 3

2. Comprendre Scrum

2.1 Les valeurs fondamentales de Scrum

Comprendre Scrum nécessite une plongée profonde dans ses valeurs fonda-
mentales, qui sont au cœur de cette méthodologie agile. Les valeurs de Scrum
donnent un sens à la structure, aux règles et aux rôles qui le composent, et
guident la manière dont les équipes travaillent ensemble.

Les cinq valeurs fondamentales de Scrum sont les suivantes :

– Engagement : chaque membre de l'équipe est engagé envers les objectifs
communs, les valeurs de l'équipe et le succès du projet. Cet engagement est
essentiel pour garantir que chaque membre contribue pleinement et assume
sa responsabilité dans le projet.

– Courage : la mise en œuvre de Scrum nécessite le courage de faire les choses
différemment, de défier le statu quo, et de faire face aux obstacles et aux
défis. Il s'agit également du courage de parler ouvertement et d'être
transparent dans la communication au sein de l'équipe.

– Concentration : la concentration est primordiale pour l'efficacité de
Scrum. Les équipes se concentrent sur un nombre limité de tâches à la fois,
garantissant que l'effort est dirigé vers les priorités les plus importantes.

– Respect : dans un cadre Scrum, le respect mutuel est essentiel. Les
membres de l'équipe respectent les compétences et les contributions des
autres, et cette confiance et ce respect mutuels facilitent une collaboration
plus efficace.

– Ouverture : l'ouverture implique une communication ouverte et honnête,
ainsi qu'une transparence dans les processus et les décisions. Les membres
de l'équipe sont ouverts aux idées et aux commentaires, ce qui favorise
l'apprentissage continu et l'amélioration.

©
 E

di
ti

on
s

EN
I -

 A
ll

ri
gh

ts
 r

es
er

ve
d

44
Des concepts à la mise en œuvre de l’agilité

Réussir avec Scrum

Ces valeurs ne sont pas simplement des mots; elles doivent être vécues et
incarnées par l'équipe. Elles guident les interactions et les décisions et sont la
base de la culture Scrum. Ensemble, elles créent un environnement où la
collaboration, l'innovation et la livraison rapide sont non seulement possibles,
mais encouragées et célébrées. Une compréhension profonde de ces valeurs est
essentielle pour quiconque souhaite mettre en œuvre Scrum de manière effi-
cace et authentique.

2.2 L'équipe Scrum

L'équipe Scrum est un élément clé de la méthodologie Scrum et elle se carac-
térise par sa structure unique et son fonctionnement interdépendant. Elle est
composée de trois rôles principaux qui travaillent en étroite collaboration
pour atteindre un objectif commun.

45Découverte complète de Scrum
Chapitre 3

Le Product Owner : le Product Owner a la responsabilité de maximiser la
valeur du produit. Il comprend les besoins des clients et des utilisateurs et tra-
duit ces besoins en objectifs clairs pour l'équipe. Il gère le carnet de produits
(Product Backlog) et priorise les éléments en fonction de leur valeur et de leur
importance.

L'équipe de développement : l'équipe de développement est composée des
professionnels qui font le travail de création et de livraison du produit. Elle est
auto-organisée et interdisciplinaire, et les membres de l'équipe collaborent
étroitement pour s'assurer que le produit est développé selon les standards de
qualité requis. L'équipe de développement est responsable de la livraison de
produits potentiellement livrables à la fin de chaque Sprint.

Le Scrum Master : le Scrum Master est le gardien de la méthodologie Scrum
au sein de l'équipe. Il facilite les réunions, aide à résoudre les obstacles et
soutient l'équipe dans son utilisation de Scrum. Le Scrum Master travaille
avec l'équipe pour s'assurer que Scrum est compris et appliqué correctement
et qu'il sert l'objectif du projet.

Ces rôles travaillent en symbiose, et la réussite de l'un dépend de la réussite
des autres. La collaboration, la communication ouverte et le respect mutuel
sont essentiels pour le bon fonctionnement de l'équipe Scrum. Les responsa-
bilités et les attentes sont clairement définies, et chaque membre de l'équipe
comprend son rôle et la manière dont il contribue à l'ensemble.

L'équipe Scrum n'est pas seulement un groupe de personnes travaillant sur un
projet, c'est une unité cohésive qui partage une vision et un engagement
communs envers l'excellence et l'innovation. La dynamique et la composition
de l'équipe Scrum sont conçues pour encourager la créativité, la responsabilité
et l'efficacité, et elles sont au cœur de la puissance et de la flexibilité de la
méthodologie Scrum.

©
 E

di
ti

on
s

EN
I -

 A
ll

ri
gh

ts
 r

es
er

ve
d

46
Des concepts à la mise en œuvre de l’agilité

Réussir avec Scrum

Présentation de l’équipe

Nous allons maintenant vous présenter l'équipe que nous allons suivre à
travers ce livre et qui vous permettra de comprendre le rôle de chaque membre
d'une équipe Scrum.

Cette équipe symbolise une mise en œuvre typique de la méthodologie Scrum
dans un contexte réel.

Thomas, le Scrum Master : Thomas est le gardien de la méthodologie
Scrum au sein de l'équipe. Passionné et déterminé, il veille à ce que chaque
membre de l'équipe comprenne et applique les principes et les pratiques de
Scrum. Il facilite les réunions, aide à éliminer les obstacles et assure que le
processus Scrum se déroule sans heurt. Thomas est un leader serviteur qui
met l'équipe en premier et travaille en étroite collaboration avec le Product
Owner et l'équipe de développement.

Dans le contexte de Scrum, un "leader serviteur" est un type de leadership où
le rôle principal du leader est de servir son équipe. Il s'agit d'une approche qui
renverse le modèle traditionnel de leadership hiérarchique en mettant l'accent
sur les besoins des membres de l'équipe, plutôt que sur ceux du leader.

Thomas, en tant que leader serviteur, se concentre principalement sur :

– **Mettre l'équipe en premier** : Thomas donne la priorité aux besoins de
l'équipe, en veillant à ce que tous les membres disposent des ressources, du
soutien et de l'environnement nécessaires pour réussir. Il s'assure que
l'équipe est motivée, engagée et qu'elle a une bonne dynamique de travail.

– **Travailler en étroite collaboration avec le Product Owner et l'équipe de
développement** : en tant que leader serviteur, Thomas facilite la commu-
nication et la collaboration entre le Product Owner, qui détient la vision et
les exigences du produit, et l'équipe de développement, qui met en œuvre
cette vision. Il s'assure que les objectifs, les priorités et les retours d'informa-
tion circulent efficacement entre tous les intervenants.

47Découverte complète de Scrum
Chapitre 3

L'approche de leader serviteur dans Scrum est souvent incarnée par le rôle du
Scrum Master, bien que d'autres membres de l'équipe puissent également
adopter ce style de leadership. Le leader serviteur dans Scrum se concentre sur
l'élimination des obstacles, l'encouragement de la croissance personnelle et
professionnelle de chaque membre de l'équipe, et la promotion des valeurs et
principes agiles au sein de l'équipe. Ce faisant, le leader serviteur aide à créer
un environnement où l'équipe peut être autonome, auto-organisée et haute-
ment performante, tout en travaillant de manière cohérente vers les objectifs
communs du projet.

Clara, le Product Owner : Clara est la visionnaire derrière le produit. Elle
comprend les besoins du marché et travaille en étroite collaboration avec les
clients et les utilisateurs pour identifier ce qui doit être réalisé. Sophie priorise
le carnet de produits et collabore étroitement avec l'équipe de développement
et Thomas pour s'assurer que le bon travail est fait au bon moment.

L'équipe de développement : composée de développeurs, testeurs, designers
et autres professionnels, l'équipe de développement collabore pour créer le
produit. Ils sont auto-organisés et interdisciplinaires, et ils travaillent en
étroite collaboration avec Thomas et Sophie pour s'assurer que le produit est
développé conformément aux spécifications.

L'équipe de Thomas incarne les valeurs fondamentales de Scrum, telles que la
collaboration, l'engagement, la concentration, l'ouverture et le respect.
Chaque membre apporte son expertise et ses compétences uniques, et
ensemble, ils forment une équipe soudée qui s'efforce d'atteindre un objectif
commun.

La réussite de cette équipe dépend de la manière dont ils communiquent, col-
laborent et se font confiance. Thomas, en tant que Scrum Master, joue un rôle
crucial dans la facilitation de cette dynamique et assure que l'équipe reste
fidèle aux principes de Scrum.

L'exemple de l'équipe de Thomas sera utilisé tout au long des chapitres sui-
vants pour illustrer divers aspects et concepts de Scrum, ce qui permettra une
compréhension plus profonde et plus contextualisée de cette méthodologie
agile.

©
 E

di
ti

on
s

EN
I -

 A
ll

ri
gh

ts
 r

es
er

ve
d

48
Des concepts à la mise en œuvre de l’agilité

Réussir avec Scrum

2.3 Les trois piliers de Scrum

Les trois piliers de Scrum sont des principes fondamentaux qui soutiennent
l'ensemble de la structure de la méthodologie. Ils sont essentiels pour com-
prendre comment Scrum fonctionne et comment il peut être appliqué avec
succès dans n'importe quel projet. Reprenons l'exemple de l'équipe de Thomas
pour illustrer ces concepts.

2.3.1 La transparence

La transparence est le premier pilier de Scrum. Elle implique que toutes les
informations relatives au projet soient visibles et comprises par tous les
membres de l'équipe. Dans l'équipe de Thomas, cela signifie que chaque
personne, qu'il s'agisse de développeurs, de testeurs ou de gestionnaires, a
accès aux informations pertinentes. Thomas, en tant que Scrum Master, veille
à ce que les processus soient transparents et que les informations soient
partagées ouvertement. La transparence aide à construire la confiance et
assure que tout le monde est sur la même longueur d'onde.

49Découverte complète de Scrum
Chapitre 3

2.3.2 L'inspection

Le deuxième pilier, l'inspection, concerne la vérification régulière des progrès
et des processus pour s'assurer qu'ils sont en ligne avec les objectifs du projet.
L'équipe de Thomas utilise diverses réunions Scrum, comme les mêlées quoti-
diennes et les rétrospectives, pour inspecter leur travail et leur progression.
L'inspection permet de détecter les problèmes tôt et de s'assurer que l'équipe
est sur la bonne voie. Cela favorise également l'apprentissage continu et l'amé-
lioration.

2.3.3 L'adaptabilité

L'adaptabilité est le troisième pilier de Scrum. Cela signifie que l'équipe doit
être prête à changer et à s'ajuster en fonction de ce qu'elle apprend pendant
l'inspection. Dans l'équipe de Thomas, l'adaptabilité se produit à plusieurs
niveaux. Si un obstacle est identifié lors d'une mêlée quotidienne, l'équipe
peut adapter son plan pour le surmonter. Si une rétrospective révèle des
domaines d'amélioration, des changements peuvent être apportés au
processus pour le sprint suivant. L'adaptabilité assure que l'équipe reste agile
et réactive aux changements et aux défis.

2.3.4 Combinaison

En combinant ces trois piliers, l'équipe de Thomas crée une approche de travail
solide et flexible qui lui permet de répondre aux besoins changeants de leur
projet. La transparence, l'inspection et l'adaptabilité se renforcent mutuelle-
ment et chacun est nécessaire pour le bon fonctionnement de Scrum. La
compréhension et l'application de ces principes sont essentielles pour le succès
de toute équipe Scrum.

239

Chapitre 1-3
Les outils techniques

Les outils techniques1. Code versioning
En développement informatique, le code d’un projet conséquent se retrouve
éclaté en milliers de fichiers. Parmi cette quantité de fichiers, il est tout à fait
possible que plusieurs développeurs soient amenés à travailler sur un même
fichier à un moment donné.

Chaque développeur tape son code en local sur sa machine ; quand il a fini, il
enregistre son code sur un tronc commun situé sur un serveur distant.

Or, si deux développeurs ont travaillé sur un même code d’un même fichier,
au moment d’enregistrer sur le tronc commun, il risque d’y avoir des conflits.
Quel code faut-il alors conserver ? Il n’y a pas de système de verrouillage sur
les fichiers, de sorte que quand j’utilise le fichier, les autres ne peuvent le
modifier ! Un bon logiciel de gestion de code versioning sait parfaitement
traiter ce genre de conflit. C’est la base pour travailler en équipe sans perdre
de temps à attendre que les fichiers soient disponibles. La référence dans le
domaine est de loin l’application GitHub. Ce type d’application permet
d’effectuer toutes les actions possibles dans le quotidien du développeur :
récupérer tout le code du projet à partir du tronc commun, afin de le copier en
local.

©
 E

di
ti

on
s

EN
I -

 A
ll

ri
gh

ts
 r

es
er

ve
d

240
Au cœur de l’agilité

De Scrum à SAFe

C’est ce qu’on appelle la création de l’espace de travail du développeur où il
pourra ensuite ajouter, supprimer ou modifier les fichiers du projet. Une fois
son travail terminé, il pourra expédier le résultat sur le tronc commun. Cette
action nécessite quelques vérifications avant de valider les modifications. Ce
type d’application permet aussi d’avoir toute sorte d’information sur les
fichiers : par exemple, qui a saisi tel code, quand, pourquoi, qui a supprimé,
qui a modifié, qui a fait le café... non, oublions ce dernier, il ne faut pas
exagérer !

Vous avez ci-dessus une photo de mon écran, je suis en train de taper du code
sur le fichier ElecConsumptionController.cs.

Un projet peut contenir des milliers de fichiers de ce type et l’ensemble des
lignes de code du projet peut largement dépasser le million. Dans le jargon in-
formatique, le tronc commun s’appelle la branche Main ou branche princi-
pale, ou encore dépôt distant ! Cette branche contient le code du projet dans
sa totalité à un instant t et dans un état pur, c’est-à-dire sans aberration de
code. Le code de la branche Main respecte toutes les règles de codage définies
par l’équipe ; et bien sûr, ce code doit absolument être compilable. La compi-
lation consiste à traduire un code comme celui ci-dessus (lisible par un
humain) en un autre code qui, cette fois-ci, ne contiendra que des 0 et des 1 !
C’est le fameux code binaire, seul code compréhensible par les microproces-
seurs des ordinateurs. On ne passe pas tout de suite en code binaire quand on
développe sous des langages comme C# ou Java, mais nous n’allons pas entrer
dans les détails. Un développeur qui fusionne dans la branche Main un
code non compilable commet un sacrilège !

241Les outils techniques
Chapitre 1-3

Avant de vouloir fusionner son code sur la branche Main, le développeur doit
tout d’abord le tester en local, puis vérifier que son code compile et que les
tests unitaires sont tous validés. Notons une étape très importante : avant de
démarrer un nouveau code, il doit absolument se synchroniser avec la branche
Main pour récupérer les dernières modifications validées sur cette branche par
ses collègues. Ainsi, il pourra traiter plus facilement d’éventuels conflits avant
de faire valider son propre code. Finalement, il doit s’assurer que l’intégration
continue n’est pas bloquée ! On en reparlera, mais sachez qu’on ne doit sous
aucun prétexte forcer un code sur la branche Main si l’intégration continue est
au rouge, c’est-à-dire si un problème a été détecté. Le but de l’intégration
continue est de vérifier que les nouveaux codes intégrés dans la branche Main
ne cassent pas l’harmonie qui règne sur la branche. Autrement dit, il s'agit de
s'assurer que le nouveau code introduit ne va pas provoquer des erreurs en tout
genre.

Dans le jargon, on ne parle pas de fusion mais on dit qu’on va merger son
code ! Il n’y a rien d’ésotérique ici, to merge en anglais signifie fusionner !
Chaque développeur tape donc son code de son côté, puis une fois fini, il le
merge sur la branche principale. On peut aussi dire qu’il intègre son code dans
la branche principale. Cette dernière est par conséquent une branche d’inté-
gration de tout le code produit ; autrement dit, notre potentielle application
à un instant t. L’action de merger sur la branche Main n’est jamais directe, il
faut prendre des précautions car, comme nous venons de le dire, la violation
de l’intégrité de la branche Main peut être fatale. On évite au maximum que
tout nouveau code vienne provoquer des erreurs sur cette branche. Chaque
développeur qui veut fusionner son code dans la branche Main doit faire une
Pull Request (PR), également appelée Merge Request (MR). Il s'agit d'une
demande de fusion de son code local vers la branche Main. Sans entrer dans
les détails, c’est un humain qui fera ou pas la validation du code. Dans les
équipes agiles, une personne de la QA (Qualité de service) peut tenir ce rôle
mais cela peut aussi être un architecte ou même un ou plusieurs développeurs
dédiés ; ou encore, pourquoi pas, l’équipe Dev elle-même ! Ainsi, dans ce
dernier cas, un code développé par untel sera vérifié par tel autre collègue pour
éviter bien sûr que celui qui a codé ne valide sa propre PR ! Si on refuse la Pull
Request, le développeur devra faire les correctifs et refaire une PR. Une fois
celle-ci acceptée, le code est intégré dans la branche Main et l’intégration
continue se met alors en marche. On en reparlera sous peu.

©
 E

di
ti

on
s

EN
I -

 A
ll

ri
gh

ts
 r

es
er

ve
d

242
Au cœur de l’agilité

De Scrum à SAFe

Quand un nouveau développeur intègre une équipe, avant de pouvoir coder la
moindre ligne, il doit se connecter sur le serveur contenant la branche Main
pour extraire tout le code du projet sur son ordinateur. Pour cela, il crée une
nouvelle branche sur ce dernier, à partir de la branche Main. Cette nouvelle
branche créée en local est donc une copie de la branche Main. Notre déve-
loppeur code ensuite uniquement en local sur sa branche sa partie de code,
puis fait sa PR une fois son code finalisé.

Dans ce domaine, la règle d'or est de ne pas coder des lignes et des lignes avant
de faire une Pull Request. On code une tâche et on fait sa PR ; on avance tâche
par tâche. Cela facilite la gestion des conflits au cas où plusieurs développeurs
auraient travaillé sur les mêmes fichiers, et cette rigueur facilite aussi le traite-
ment des Pull Requests. Comme nous l’avons rapidement évoqué, un autre
bon réflexe est de toujours récupérer la dernière version de la branche Main
avant de démarrer un nouveau code, car d’autres développeurs auront
certainement fait des merges entre-temps ; ce réflexe vous évitera donc de
vous retrouver avec trop d’écart entre votre version en local et la version de la
branche Main. L’idéal est de récupérer le code de la branche Main dès que cette
dernière a été mise à jour lors d’une PR validée.

Pour finir, le merge (la fusion entre le travail du développeur en local et le code
complet central) peut se faire dans les deux sens : soit on merge notre travail
local vers la branche Main, soit on merge de la branche Main vers notre
branche locale, ce qui revient dans ce dernier cas à récupérer la dernière version
de la branche Main. Le merge n’est donc pas une copie qui écrase l’existant
mais une copie qui fusionne le contenu de deux branches.

Nous allons nous arrêter là en ce qui concerne les branches, mais vous avez
compris l’essentiel du travail d’un développeur : créer des branches pour coder
et faire des PR pour valider son travail ; c’est ainsi qu’au gré des merges la taille
du code du projet augmente dans la branche Main.

243Les outils techniques
Chapitre 1-3

Voici ci-dessous l’exemple d’une stratégie de branche adoptée par une équipe :

L’équipe a créé sa branche Main en A. Un développeur crée une branche locale
en B afin de récupérer le code de la branche Main pour le copier dans sa nou-
velle branche locale ; on dit qu’il a tiré une branche. Il peut alors commencer
son code en local. Quand il a fini son travail, il fait un merge en D ; son code
local est désormais fusionné sur la branche Main. Il fait aussi un merge sur la
branche Recette. C’est sur cette branche Recette qu’on corrigera les bugs. Il est
interdit de développer directement sur la branche Main ! Encore moins sur la
branche Prod. Pendant que notre développeur travaillait sur son code, un autre
développeur a tiré à son tour une branche locale à l’étape C.

Quand un bug est détecté sur la branche Recette, on le corrige en développant
directement sur cette branche. Une fois le bug corrigé et la recette validée, on
tire une branche Prod puis on merge sur la branche Main pour y reporter les
corrections, car si le bug existe en Recette, c’est qu’il existe aussi en Main ! Sur
notre exemple, le premier bug détecté après le merge en D est corrigé en E et
on reporte les corrections sur la branche Main ; et comme la première mise en
production était attendue, on crée une nouvelle branche Prod. Quand la
branche Main est mise à jour, il est toujours bien pour un développeur de
récupérer rapidement en local les modifications en faisant un merge. C’est par
exemple ce que font le deuxième et le troisième développeur respectivement
en F et J.

©
 E

di
ti

on
s

EN
I -

 A
ll

ri
gh

ts
 r

es
er

ve
d

244
Au cœur de l’agilité

De Scrum à SAFe

Mais notre troisième développeur n’a pas récupéré le correctif du bug Prod fait
en L. Ce n’est pas grave, quand il fusionnera son code sur la branche Main (en
M), il verra s’il est en conflit avec les correctifs précédemment apportés sur la
branche Main. Toute correction faite sur la branche Recette doit être répercu-
tée sur la branche Main, et tôt ou tard sur la branche Prod. Tout nouveau code
sur la branche Main doit être répercuté sur la branche Recette pour être testé
avant de répercuter le code sur la branche Prod. Finalement, à partir de n’im-
porte quelle branche non locale, on est capable, à un instant t, de créer une ver-
sion du projet sous condition bien sûr que les branches Main et Recette soient
parfaitement synchronisées.

À présent, dans les équipes agiles, c’est en fin de sprint qu’on bascule le code
en Recette pour la Sprint Review ; or, au bout de n sprints, les choses se
compliquent : non seulement il faut continuer les Sprint Reviews, mais entre-
temps il faut aussi, durant le sprint, corriger les éventuels bugs détectés en
Recette. Si une livraison en production a été faite depuis, on peut aussi y
trouver des bugs qu’il faudra rapidement corriger. Dans notre exemple de
branche, pour corriger le bug trouvé en Prod, comme on ne peut développer
directement sur cette branche, il faut récupérer en K le code en Prod pour le
fusionner en Recette où on corrigera l’erreur en L. Une fois corrigé et validé,
on répercute le correctif en Prod puis en Main.

Chaque bug remonté devient, dans le sprint, une US technique à prendre en
compte. Les bugs augmentent donc la vélocité de l’équipe ! Un bon KPI serait
de connaître la part des bugs dans une vélocité.

Bien sûr, il existe des cas de figure où un bug détecté en production est d’une
telle gravité qu’il faut absolument le corriger dans les minutes qui suivent. On
n’attend donc pas la fin du sprint, il faut lancer une opération Commando
pour corriger rapidement en Recette et valider pour un merge en Prod !
Attention, il serait imprudent de corriger le bug directement sur la branche
Prod. Je me rappelle par exemple la cas d’une modification urgente qu’il fallait
effectuer sur un paramètre d’un fichier web.config d’un site e-commerce. Il n'y
avait rien de compliqué a priori, pourtant la modification directe en produc-
tion a fait tomber le site ! D'un coup, dix millions de clients ne pouvaient plus
y accéder ! En moins de cinq minutes, l’erreur a heureusement été corrigée. Le
fautif s’était trompé de fichier, pensant travailler sur le fichier Prod, alors qu'il
s'agissait du fichier web.config de la recette qu’il avait poussé en production !

245Les outils techniques
Chapitre 1-3

Cette expérience a été une grande leçon de management agile : aucun membre
de l'équipe n'a perdu son sang-froid, aucun dirigeant n'a invectivé le coupable ;
tous étaient concentrés sur la résolution du problème. En quelques minutes,
l’équipe dans sa globalité a rétabli la situation et s'est félicitée de sa parfaite
collaboration.

Comme nous le disions, quand un développeur a fini son code, il le valide. On
vérifie ce code et, si tout est OK, le code merge sur la branche Main, puis
Recette, puis Prod. L’intégration continue permet d’automatiser toutes les
étapes qui vont suivre la validation d’une Pull Request. Il reste encore
beaucoup de choses à contrôler avant d’installer l’application pour les utilisa-
teurs.

2. Intégration continue
L’intégration continue (CI) a pour but de traiter chaque merge effectué sur la
branche Main ; on intègre son code à celui de ses collègues.

Pour rappel, lorsqu’un développeur a fini son code, il effectue une Pull Request
pour soumettre son travail. Lors de la validation de cette PR, l’intégration
continue démarre. En fait, aujourd’hui, la CI fait bien plus qu'une simple
intégration du code (merge) dans la branche Main. Après le merge, on y trouve
désormais un ensemble de filtres posés les uns derrière les autres qui vont
automatiquement s’exécuter l’un après l’autre dès qu’un code est fusionné
dans la branche Main. L’ensemble de ces filtres disposés en file s’appelle un
pipeline ou workflow applicatif.

©
 E

di
ti

on
s

EN
I -

 A
ll

ri
gh

ts
 r

es
er

ve
d

246
Au cœur de l’agilité

De Scrum à SAFe

Ces filtres sont donc des éléments exécutables (une application, un script, un
job, un bout de code, un service, un web service, un microservice...) qui vont
s’exécuter de manière séquentielle dans l’ordre dans lequel ils se trouvent dans
le pipeline.

Le but de la CI est de s’assurer que le merge d’un nouveau code sur la branche
Main n’a pas entraîné d’erreur, afin de nous éviter de construire un package de
livraison rempli de bugs en tout genre. Aujourd’hui, comme nous l’avons évo-
qué, la CI est alimentée par d’autres types de contrôle ; par abus de langage,
on appelle toute la chaîne de contrôle une intégration continue.

247Les outils techniques
Chapitre 1-3

Après le merge, la CI compile (fait un Build) le code, puis effectue beaucoup
de tests ! La puissance du pipeline, réside dans la possibilité d'ajouter autant
de filtres qu’on le souhaite. Dans notre schéma ci-dessus, on a ajouté un script
« NoPack » qui pourrait par exemple envoyer un e-mail en cas d’erreur du
pipeline. Vous pourriez écrire des scripts de test de performance, par exemple,
et les intégrer dans le pipeline.

La moindre erreur dans les filtres arrête immédiatement le pipeline ; il sera
donc impossible pour ce dernier de construire le package de livraison. Ce
package est l’ensemble des fichiers constituant notre projet. Il suffit de les
installer sur un serveur pour que notre projet se transforme en application
disponible pour les utilisateurs. Ce package est composé du code binaire de
notre projet et de différents fichiers indispensables à la bonne exécution de ce
code : fichiers de dépendance, de configuration et de base de données, etc.

Dès qu’un filtre du pipeline détecte une erreur, le pipeline arrête sa course ; à
partir de cet instant, chaque membre de l’équipe interrompt sa tâche pour
tenter de résoudre le problème. Lors des tests fonctionnels (tests d’accepta-
tion), imaginez que le pipeline détecte des erreurs mais que l’équipe poursuive
malgré tout son travail et que chaque membre continue à faire des merges sur
une branche Main infectée… Les bugs se cumuleraient et on passerait plus de
temps ensuite à les résoudre ! L’intégration continue est un garde-fou, disons
même un ensemble de garde-fous. Chaque filtre du pipeline est une tour de
contrôle ne laissant passer aucune erreur traitée par le filtre. Prenons par
exemple un cas où l'on souhaite tester la couverture de code et interdire que le
pipeline ne fabrique le package d’installation dans l'hypothèse où les tests uni-
taires n’auraient pas été couverts à 80 %. Il faut alors ajouter une application
comme SonarQube pour configurer un seuil de couverture de code à 80 %.
Du coup, si les tests unitaires ont été négligés par l’équipe, avec une telle tour
de garde, il n’y a aucune chance que le pipeline ne construise le package de
livraison car on n’aura pas atteint nos 80 % de couverture de code !

