Blog ENI : Toute la veille numérique !
🐠 -25€ dès 75€ 
+ 7 jours d'accès à la Bibliothèque Numérique ENI. Cliquez ici
Accès illimité 24h/24 à tous nos livres & vidéos ! 
Découvrez la Bibliothèque Numérique ENI. Cliquez ici
  1. Supports de cours
  2. Le Deep Learning pour le traitement d’images - Classification, détection et segmentation avec Python et TensorFlow

Le Deep Learning pour le traitement d’images Classification, détection et segmentation avec Python et TensorFlow

Informations

Livraison possible dès le 03 juin 2024
  • Version en ligne offerte pendant 1 an
  • Personnalisable
Livres rédigés par des auteurs francophones et imprimés à Nantes

Caractéristiques

  • Reliure spirale - 17 x 21 cm (Médian)
  • ISBN : 978-2-409-04322-2
  • EAN : 9782409043222
  • Ref. ENI : EIMDEEPLEAR

Informations

  • Consultable en ligne immédiatement après validation du paiement et pour une durée de 10 ans.
  • Version HTML
Livres rédigés par des auteurs francophones et imprimés à Nantes

Caractéristiques

  • HTML
  • ISBN : 978-2-409-04323-9
  • EAN : 9782409043239
  • Ref. ENI : LNEIMDEEPLEAR
Cet ouvrage s’adresse à toutes les personnes désireuses de comprendre et développer des applications de traitement d’images basées sur le deep learning. Il fournit non seulement une base théorique solide, mais également des informations très pratiques, des « trucs et astuces » et des exemples sous forme de scripts Python basés sur TensorFlow. Après une introduction à l'intelligence artificielle, le matériel et les logiciels nécessaires à sa pratique sont détaillés. Suivent ensuite des...
Aperçu du livre papier
  • Niveau Confirmé à Expert
  • Nombre de pages 422 pages
  • Parution mars 2024
  • Niveau Confirmé à Expert
  • Parution janvier 2024
Cet ouvrage s’adresse à toutes les personnes désireuses de comprendre et développer des applications de traitement d’images basées sur le deep learning. Il fournit non seulement une base théorique solide, mais également des informations très pratiques, des « trucs et astuces » et des exemples sous forme de scripts Python basés sur TensorFlow.

Après une introduction à l'intelligence artificielle, le matériel et les logiciels nécessaires à sa pratique sont détaillés. Suivent ensuite des explications progressives des réseaux de neurones convolutionnels, en décrivant tout d’abord les classifieurs linéaires, puis les réseaux de neurones profonds, et enfin les réseaux convolutionnels. Ces trois chapitres sont accompagnés de scripts Python utilisant TensorFlow, et suivis d’astuces pour améliorer la performance et limiter les biais potentiels du réseau et l’impact carbone lié à son apprentissage et son utilisation. L'apprentissage par transfert, qui consiste à adapter un réseau pré-entraîné à une nouvelle tâche, est ensuite présenté, et accompagné d’un exemple basé sur TensorFlow.

Les chapitres suivants décrivent les réseaux convolutionnels appliqués à d'autres tâches que la classification, comme la détection et la segmentation. Ces chapitres sont accompagnés de scripts présentant l’utilisation des bibliothèques TensorFlow Object Detection et de l'architecture Unet.

Le lecteur trouve une description de plusieurs méthodes permettant de visualiser le fonctionnement du réseau et d’améliorer son explicabilité, puis cet ouvrage explique pourquoi surveiller les performances d’un modèle après son déploiement, et comment organiser une telle surveillance en pratique. Le script accompagnant ce chapitre décrit le fonctionnement de la librairie tf_explain, qui implémente plusieurs des méthodes présentées.

Vient ensuite un exposé des critères définis par la Commission européenne pour juger qu’un modèle d'intelligence artificielle est "responsable", et une traduction de ces critères en bonnes pratiques à adopter lors du développement et du déploiement.

Enfin, le support conclut avec des conseils pour améliorer vos compétences et vous tenir au courant des évolutions récentes dans le domaine de l'apprentissage profond appliqué au traitement d'images.

Téléchargements

Auteur : Daphné WALLACH

Daphné WALLACH

Diplômée d’un doctorat en intelligence artificielle pour le traitement d’images médicales, Daphné Wallach exerce depuis plus de 10 ans dans ce domaine. Elle est ingénieure en recherche et développement dans la start-up Intradys, qui développe des outils d’intelligence artificielle pour la neuroradiologie interventionnelle. Elle met également son expertise au bénéfice de formations sur l’intelligence artificielle et sur le traitement d’images, qu’elle dispense à l’université de Rennes et en entreprise. 
En savoir plus

Nos nouveautés

voir plus