Blog ENI : Toute la veille numérique !
Accès illimité 24h/24 à tous nos livres & vidéos ! 
Découvrez la Bibliothèque Numérique ENI. Cliquez ici
Accès illimité 24h/24 à tous nos livres & vidéos ! 
Découvrez la Bibliothèque Numérique ENI. Cliquez ici
  1. Livres et vidéos
  2. Python pour la Data Science - Analysez vos données par la pratique avec NumPy, Pandas, Matplotlib et Seaborn

Python pour la Data Science Analysez vos données par la pratique avec NumPy, Pandas, Matplotlib et Seaborn

4 avis

Informations

Livraison possible dès le 16 avril 2024
  • Livraison à partir de 0,01 €
  • Version en ligne offerte pendant 1 an
Livres rédigés par des auteurs francophones et imprimés à Nantes

Caractéristiques

  • Livre (broché) - 17 x 21 cm
  • ISBN : 978-2-409-02626-3
  • EAN : 9782409026263
  • Ref. ENI : EIPYTDAT

Informations

  • Consultable en ligne immédiatement après validation du paiement et pour une durée de 10 ans.
  • Version HTML
Livres rédigés par des auteurs francophones et imprimés à Nantes

Caractéristiques

  • HTML
  • ISBN : 978-2-409-02627-0
  • EAN : 9782409026270
  • Ref. ENI : LNEIPYTDAT
Ce livre sur la Data Science avec le langage Python, alliant théorie et pratique, s’adresse aussi bien aux étudiants et professionnels (ingénieurs, chercheurs, enseignants, data scientists), qu’aux informaticiens souhaitant apprendre à analyser des données avec Python. La première partie du livre vise à introduire le langage Python et son utilisation dans le domaine de l’analyse de données. Le lecteur y découvre la mise en place de l’environnement de travail ainsi que des rappels sur le...
Consulter des extraits du livre en ligne Aperçu du livre papier
  • Niveau Confirmé à Expert
  • Nombre de pages 388 pages
  • Parution août 2020
  • Niveau Confirmé à Expert
  • Parution août 2020
Ce livre sur la Data Science avec le langage Python, alliant théorie et pratique, s’adresse aussi bien aux étudiants et professionnels (ingénieurs, chercheurs, enseignants, data scientists), qu’aux informaticiens souhaitant apprendre à analyser des données avec Python.

La première partie du livre vise à introduire le langage Python et son utilisation dans le domaine de l’analyse de données. Le lecteur y découvre la mise en place de l’environnement de travail ainsi que des rappels sur le langage Python.

Dans une deuxième partie, le lecteur apprend à manipuler efficacement ses données grâce aux librairies NumPy et Pandas. Chaque notion est introduite théoriquement puis illustrée par un exemple concret permettant de comprendre son application. Il apprend à importer ses données sous Python et à utiliser les fonctions, méthodes et attributs fournis pour les explorer et les manipuler afin d’en faire ressortir des informations et tendances.

Dans une troisième partie, le lecteur apprend à visualiser ses données avec les librairies Matplotlib et Seaborn, lui permettant de comprendre l’architecture et le fonctionnement de la création de figures avec Python, ainsi que les types de graphiques à utiliser selon le type de variables à représenter.

Enfin, dans le dernier chapitre, l’auteur propose un exercice complet avec sa correction permettant de mettre en pratique les notions étudiées. Il permet au lecteur d’écrire le code permettant de répondre aux questions de l’exercice.

Pour chaque chapitre, un fichier contenant le code source utilisé, appelé notebook, est disponible en téléchargement sur le site www.editions-eni.fr. Ce notebook permet au lecteur de tester le code, de le modifier et d’y tester ses propres lignes de code. De plus, deux jeux de données réels sont disponibles en téléchargement et utilisés dans ce livre pour illustrer les propos de l’auteur.


Quizinclus dans
la version en ligne !
  • Testez vos connaissances à l'issue de chaque chapitre
  • Validez vos acquis

Téléchargements

Avant-propos et introduction
  1. Avant-propos
  2. Python et l'analyse de données
    1. 1. L’explosion des données
    2. 2. L’analyse de données
    3. 3. R et Python pour l’analyse de données
  3. Connaître les sources de données libres
    1. 1. Kaggle
    2. 2. Les données gouvernementales
  4. Déroulement du livre
Mise en place de l'environnement de travail
  1. Introduction : pourquoi utiliser Python pour la Data Science ?
  2. Introduction à IPython et Jupyter
    1. 1. Introduction à IPython
    2. 2. Le projet Jupyter
  3. Qu'est-ce qu'Anaconda ?
  4. Installation d'Anaconda
    1. 1. Installation sur Windows
    2. 2. Installation sur MacOS
    3. 3. Installation sur Linux
  5. Découverte d'Anaconda Navigator
    1. 1. Applications disponibles dans Anaconda Navigator
    2. 2. Gestion des packages et environnements
  6. Prise en main de Jupyter Notebook
    1. 1. Tableau de bord de Jupyter Notebook
    2. 2. Premiers pas avec les notebooks
    3. 3. Comprendre l’interface des notebooks
      1. a. La barre de menus
      2. b. La barre d’outils
      3. c. Les cellules
      4. d. Les modes Commande et Edition et les raccourcis-clavier
      5. e. Les bases du langage Markdown pour écriredans un notebook
      6. f. Partager son notebook
  7. Les packages Python essentiels pour la Data Science
    1. 1. NumPy
    2. 2. Pandas
    3. 3. Matplotlib
    4. 4. Seaborn
Rappels sur le langage Python
  1. Introduction sur le langage de programmation Python
  2. Les variables
  3. Les différents types de données (int, float, bool, str)
    1. 1. Les nombres réels et entiers
    2. 2. Les booléens
    3. 3. Les chaînes de caractères
  4. Les structures de données basiques (listes, tuples et dictionnaires)
    1. 1. Les listes
      1. a. Créer une liste
      2. b. Accéder aux éléments d’uneliste
      3. c. Ajouter et supprimer des éléments à uneliste
    2. 2. Les tuples
    3. 3. Les dictionnaires
      1. a. Introduction aux dictionnaires
      2. b. Ajouter, modifier et supprimer des élémentsd’un dictionnaire
      3. c. Parcourir un dictionnaire
  5. Les opérateurs arithmétiques, relationnels et logiques
    1. 1. Les opérateurs arithmétiques
    2. 2. Les opérateurs relationnels et logiques
      1. a. Les opérateurs relationnels
      2. b. Les opérateurs logiques
  6. Vocabulaire en Python : fonctions, méthodes, attributs, modules et librairies (packages)
    1. 1. Fonctions
    2. 2. Méthodes
    3. 3. Attributs
    4. 4. Modules
    5. 5. Librairies (packages)
  7. Instructions de condition if et boucles for
    1. 1. Instruction de condition if
    2. 2. Boucle for
Maîtriser la librairie NumPy
  1. Introduction à NumPy
  2. Les tableaux NumPy
    1. 1. Créer un ndarray
      1. a. Créer un ndarray à partir de listes
      2. b. Créer un ndarray grâce à desfonctions NumPy
      3. c. Créer un ndarray à partir d’un fichier
    2. 2. Indexation
      1. a. Indexation simple
      2. b. Indexation booléenne
      3. c. Fancy indexing
    3. 3. Accéder aux éléments partranche (slicing)
      1. a. Slicing sur un tableau NumPy à 1 dimension
      2. b. Slicing sur un tableau NumPy à 2 dimensions
    4. 4. Notion de vue et copie
  3. Les opérations mathématiques avec NumPy
    1. 1. Les opérations arithmétiques
    2. 2. Les fonctions d’agrégations
  4. Inspecter un tableau grâce aux attributs de NumPy
  5. Manipuler des tableaux NumPy
    1. 1. Ajouter et supprimer des élémentsdans un tableau
      1. a. Ajouter des éléments dans un tableau
      2. b. Supprimer des éléments d’un tableau
    2. 2. Diviser un tableau NumPy (split, hsplit et vsplit)
      1. a. Sur un tableau à une dimension
      2. b. Sur un tableau à deux dimensions
    3. 3. Concaténer/combiner des tableaux
      1. a. La fonction concatenate()
      2. b. Les fonctions vstack() et hstack()
  6. Introduction aux matrices avec NumPy
Maîtriser la librairie Pandas
  1. Introduction
    1. 1. Introduction à la librairie Pandas
    2. 2. Introduction au jeu de données utilisé pourles exemples
  2. Lire et écrire des fichiers avec Pandas
    1. 1. Lecture de fichiers texte (CSV ou TXT)
      1. a. Lecture basique d’un fichier
      2. b. Gestion de l’en-tête
      3. c. Gestion des index
      4. d. Création d’un tableau à une dimension à partirdu fichier
      5. e. Filtrage des colonnes lors de la lecture du fichier
      6. f. Les types des différentes colonnes
      7. g. Gestion des dates lors de la lecture du fichier
    2. 2. Lecture de fichiers Excel
    3. 3. Importation des données à partird’une base de données
    4. 4. Lecture de fichiers au format JSON
    5. 5. Écriture de fichiers ou exportation de données
  3. Structure de données Pandas : les Series (Séries)
    1. 1. Introduction
    2. 2. Créer des séries
      1. a. À partir de valeurs aléatoires
      2. b. À partir d’une liste Python
      3. c. À partir d’un tableau NumPy (ndarray)
      4. d. À partir d’un fichier texte
    3. 3. Choisir l’index d’une série
    4. 4. Accéder aux valeurs d’une série
      1. a. Indexing via la position des valeurs
      2. b. Indexing via l’étiquette des valeurs
      3. c. Les indexeurs loc et iloc
      4. d. Indexing via une expression booléenne
      5. e. Slicing : découpage de valeurs successives
    5. 5. Les attributs et les méthodes des objetsde classe Series
      1. a. Les attributs des objets de classe Series
      2. b. Les méthodes des objets de classe Series
    6. 6. Ajouter, supprimer et modifier les valeurs d’une série
      1. a. Ajouter des valeurs à une série
      2. b. Supprimer une valeur d’une série
      3. c. Modifier les valeurs d’une série
  4. Structure de données Pandas : les objets de type DataFrame
    1. 1. Introduction
    2. 2. Indexing : sélectionner des valeursd’un dataframe
      1. a. Indexing et slicing avec l’attribut loc
      2. b. Indexing et slicing avec l’attribut iloc
      3. c. Indexing avec une expression booléenne
    3. 3. Ajout, suppression et modification sur un dataframe
      1. a. Ajouter une ou plusieurs colonnes à un dataframe
      2. b. Ajouter une ligne à un dataframe
      3. c. Supprimer des lignes ou colonnes d’un dataframe
      4. d. Modifier des valeurs dans un dataframe
    4. 4. Nettoyage et préparation des donnéesavec Pandas
      1. a. Gestion des données manquantes
      2. b. Gestion des données dupliquées
    5. 5. Exploration préliminaire d’un dataframe
      1. a. Principaux attributs
      2. b. Définition des termes variable, variablequantitative et variable qualitative et découverte de laméthode describe()
      3. c. Méthodes de tri d’un dataframe
  5. Structure de données Pandas : les panels
  6. Manipulation avancée des données avec Pandas
    1. 1. Les opérations groupby
      1. a. groupby sur une colonne
      2. b. groupby sur plusieurs colonnes
      3. c. Appliquer plusieurs fonctions avec la méthodegroupby et la méthode aggregate
    2. 2. Appliquer une fonction à un dataframe avecla méthode apply
    3. 3. Remodeler/réorganiser des dataframes
      1. a. Pivotage : la méthode pivot_table
      2. b. Les méthodes stack (empiler) et unstack (désempiler)
Maîtriser la librairie Matplotlib
  1. Introduction
  2. Le fonctionnement de Matplotlib
    1. 1. Architecture de Matplotlib
    2. 2. Organisation des figures avec Matplotlib
  3. La création d'un premier graphique simple
    1. 1. Préparer son jeu de données
    2. 2. Créer un nuage de points
    3. 3. Ajouter un titre principal et des labels aux axesdu nuage de points
    4. 4. Enregistrer son graphique
    5. 5. Changer la taille de la fenêtre graphiqueet la résolution de son graphique
    6. 6. Tracer plusieurs courbes sur un même graphique(sur un même objet axes)
    7. 7. Ajouter une légende à son graphique
    8. 8. Annoter son graphique avec du texte
    9. 9. Combiner plusieurs graphiques grâce à subplotet subplots
      1. a. Tracer des sous-graphiques (subplot) sur une ligneou une colonne
      2. b. Tracer des sous-graphiques sur plusieurs lignes etplusieurs colonnes
      3. c. Incruster un objet axes dans un autre
  4. Les différents types de graphes
    1. 1. Types de graphiques selon les types de variables (quantitativeset qualitatives)
    2. 2. Scatterplot
    3. 3. Graphique à barres (bargraph)
      1. a. Graphique à barres simple
      2. b. Graphique à barres groupées
      3. c. Graphique à barres empilées
    4. 4. Boxplots
Maîtriser la librairie Seaborn
  1. Introduction
  2. L'esthétique des figures avec Seaborn (Aesthetic)
    1. 1. Paramétrer les styles Seaborn (thèmes)
    2. 2. Supprimer les axes
    3. 3. Paramétrer les contextes avec Seaborn
    4. 4. Les palettes de couleur avec Seaborn
      1. a. Choisir une palette de couleurs existante
      2. b. Créer sa propre palette de couleurs
  3. Les différents types de graphiques
    1. 1. Préparation du jeu de données
    2. 2. Nuage de points (scatterplot)
    3. 3. Graphiques de régression
    4. 4. Pointplot
    5. 5. Nuage de points avec une variable qualitative :stripplot
    6. 6. Boxplots
    7. 7. Graphique à barres : countplot
    8. 8. Histogrammes
    9. 9. Jointplot
    10. 10. Pairplot
    11. 11. Heatmap
  4. Les graphiques multi-grilles
    1. 1. FacetGrid
    2. 2. PairGrid
    3. 3. JointGrid
  5. Conclusion
Exercice complet sur jeu de données réel
  1. Introduction
  2. Présentation du jeu de données
  3. Énoncé de l'exercice
    1. 1. Lire le fichier
    2. 2. Afficher les dimensions du dataframe
    3. 3. Compter les films et les séries
    4. 4. Générer le résumé statistiquedu dataframe
    5. 5. Compter les valeurs manquantes
    6. 6. Explorer les valeurs manquantes
      1. a. Sur la colonne des directeurs de production
      2. b. Sur la colonne des acteurs
    7. 7. Supprimer les lignes dupliquées
    8. 8. Compter les films/séries produitspar les États-Unis et par la France
    9. 9. Afficher le contenu le plus vieux disponible sur Netflix
    10. 10. Afficher le film avec la durée la plus longuesur Netflix
      1. a. Nouvelle notion : les méthodes str
      2. b. Énoncé
    11. 11. Étudier les catégories avec le plusde contenu
    12. 12. Afficher les directeurs qui ont produit le plus defilms/séries disponibles sur Netflix
    13. 13. Voir si Jan Suter travaille souvent avec les mêmesacteurs
    14. 14. Représenter les dix pays qui ont produitle plus de contenus disponibles sur Netflix, avec le nombre de contenus parpays
    15. 15. Tracer un graphe à barres du nombre de films/sériespar classement de contenu (rating)
    16. 16. Afficher l’évolution du nombre de films/sériesdisponibles sur Netflix au cours du temps
      1. a. Notions supplémentaires sur les dates
      2. b. Énoncé
    17. 17. Afficher la distribution de la durée desfilms disponibles sur Netflix
    18. 18. Tracer un graphique représentant le nombrede séries par modalité de nombre de saisons
3,5/5 4 avis

Le livre est extra il permet sans connaissance préalable préalable de rentrer dans le monde de la data science. Le livre est passionnant et très pédagogique. L'autrice est un excellent professeur

Anonyme

Pour ceux qui ne connaissent rien à python rien de plus…

Anonyme

Je n'ai pas encore eu le temps de me plonger dans la lecture de tous les livres, donc, jusqu'à preuve du contraire, je vais dire que je suis content.

Anonyme

Très bien

Anonyme
Auteur : Amandine VELT

Amandine VELT

Diplômée du master Bioinformatique Modélisation et Statistique de l’Université de Rouen Normandie, Amandine VELT est ingénieure en Bioinformatique à l’INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement). Passionnée par la programmation, le traitement de données de grandes volumétries et l’enseignement, elle est aussi formatrice indépendante en Data Science avec les langages de programmation Python et R. Ses deux formations en ligne dans le domaine regroupent environ 3000 participants. Ce livre, qu’elle a voulu pratique et concret, est dédié aux lecteurs désireux d’apprendre à analyser des données ave le langage Python.
En savoir plus

Découvrir tous ses livres

  • Python pour la Data Science - Analysez vos données avec NumPy, Pandas, Matplotlib et Seaborn Livre avec complément vidéo : Visualisation de données

Nos nouveautés

voir plus