Cet ouvrage s’adresse à toutes les personnes désireuses de comprendre et développer des applications de traitement d’images basées sur le deep learning. Il fournit non seulement une base théorique solide, mais également des informations très pratiques, des « trucs et astuces » et des exemples sous forme de scripts Python basés sur TensorFlow. Après une introduction à l'intelligence artificielle, le matériel et les logiciels nécessaires à sa pratique sont détaillés. Suivent ensuite des...
Cet ouvrage s’adresse à toutes les personnes désireuses de comprendre et développer des applications de traitement d’images basées sur le deep learning. Il fournit non seulement une base théorique solide, mais également des informations très pratiques, des « trucs et astuces » et des exemples sous forme de scripts Python basés sur TensorFlow.
Après une introduction à l'intelligence artificielle, le matériel et les logiciels nécessaires à sa pratique sont détaillés. Suivent ensuite des explications progressives des réseaux de neurones convolutionnels, en décrivant tout d’abord les classifieurs linéaires, puis les réseaux de neurones profonds, et enfin les réseaux convolutionnels. Ces trois chapitres sont accompagnés de scripts Python utilisant TensorFlow, et suivis d’astuces pour améliorer la performance et limiter les biais potentiels du réseau et l’impact carbone lié à son apprentissage et son utilisation. L'apprentissage par transfert, qui consiste à adapter un réseau pré-entraîné à une nouvelle tâche, est ensuite présenté, et accompagné d’un exemple basé sur TensorFlow.
Les chapitres suivants décrivent les réseaux convolutionnels appliqués à d'autres tâches que la classification, comme la détection et la segmentation. Ces chapitres sont accompagnés de scripts présentant l’utilisation des bibliothèques TensorFlow Object Detection et de l'architecture Unet.
Le lecteur trouve une description de plusieurs méthodes permettant de visualiser le fonctionnement du réseau et d’améliorer son explicabilité, puis cet ouvrage explique pourquoi surveiller les performances d’un modèle après son déploiement, et comment organiser une telle surveillance en pratique. Le script accompagnant ce chapitre décrit le fonctionnement de la librairie tf_explain, qui implémente plusieurs des méthodes présentées.
Vient ensuite un exposé des critères définis par la Commission européenne pour juger qu’un modèle d'intelligence artificielle est "responsable", et une traduction de ces critères en bonnes pratiques à adopter lors du développement et du déploiement.
Enfin, le livre conclut avec des conseils pour améliorer vos compétences et vous tenir au courant des évolutions récentes dans le domaine de l'apprentissage profond appliqué au traitement d'images.
Respect de la vie privée et gouvernance des données
Transparence
Diversité, non-discrimination et équité
Bien-être sociétal et environnemental
Responsabilisation
Conclusion
Conclusion
Ce que vous avez appris
Pour aller plus loin
1. S’entraîner sur des cas pratiques
2. Élargir ses connaissances théoriques
3. Se tenir au courant des dernières avancéesthéoriques et pratiques
Un professionnel s'attend à plus de détail sur l'algorithmique. Cela reste un bel exposé de concepts. Idéal pour ceux qui survolent le sujet mais de peu d'utilité pour ceux qui ont les mains dans le cambouis.
Philippe B
bon ouvrage, bien rédige et intérressant et didactique
MICHEL K
Daphné WALLACH
Diplômée d’un doctorat en intelligence artificielle pour le traitement d’images médicales, Daphné Wallach exerce depuis plus de 10 ans dans ce domaine. Elle est ingénieure en recherche et développement dans la start-up Intradys, qui développe des outils d’intelligence artificielle pour la neuroradiologie interventionnelle. Elle met également son expertise au bénéfice de formations sur l’intelligence artificielle et sur le traitement d’images, qu’elle dispense à l’université de Rennes et en entreprise.